Data Analysis and Visualisation Using Python

Course Code (Credit):

CUTM 1018(0-1-3)

Course Objectives:

  • How to tell a story from data.
  • How to marshal the data for storyline.
  • The ability to develop visualisation to tell the story.
  • The focus is on analysis of data using visualisation as a tool.

Learning Outcomes:

  • To create impactful visualisation with good story line.

Course Syllabus:

Module I: STORY BOARD DEVELOPMENT

The objective and flow of the story to be understood through cases

Module II: DATA READING USING PYTHON FUNCTIONS

Python libraries: Pandas, NumPy, Plotly, Matplotlib, Seaborn, Dash Data collection from online data sources, Web scrap, data formats such as HTML, CSV, MS Excel, data compilation, arranging and reading data, data munging

Module III: DATA VISUALSATION USING PYTHON LIBRARIES

Different graphs such as Scatterplot, Line chart, Histogram, Bar chart, Bubble chart, Heatmaps etc. Dashboard Basics – Layout, Reporting, Infographics, Interactive components, live updating

Projects List:
Project No. Project Name
1World Development Indicators
2IPL matches
3IBM HR Analytics
4Statewise Analysis Socio Economic Indicators
5Analysis of Lawn Tennis Tournaments
6World Cup
7FIFA cup
8Status of Micro Small Medium Enterprises in India
9Crime Against Women
10Tourism in India
11Loan/Credit Analysis
12Indian Budget Analysis
13Handlooms in India
14Crimes in India
15E-commerce
16NIRF Results
17Results Analysis of CUTM students (last five year passed out students)
18Malnutrition
19Population
20Performance of Indian Movies
21Crop Production in India
22Sales in Super Markets
23ERP dashboarding (Project-2)
24Details of Social/ Empowerment schemes of Govt. etc.
25COVID 19

Text Books:

  1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th Edition
  2. Higher Engineering Mathematics by B.V. Ramana

Reference Books:

  1. J. Sinha Roy & S. Padhy, A Course of Ordinary and Partial Differential Equations
  2. Thomas' Calculus – G.B. Thomas et al.
  3. Introduction to Real Analysis – R.G. Bartle & D.R. Sherbert

Session Plan:

Session Topic Reference Link (if any)
1 Course objective, outcome, methodology and assessment.
Why data visualisation
YouTube: Data Visualisation
YouTube: Data Visualisation 2
PPT: Introduction to Data Analytics & Visualization using Python
2 Story telling using Visuals & Infographics
Tips on good visuals
Project Groups: Students divided into groups to do two projects
PPT: Story Boarding
Infographic Templates
Learn Data Visualization Python
Storytelling with Data
State Dashboard Odisha
Data.gov.in
YouTube: Tips on Good Visuals
3 Practice: Environmental setup - Anaconda and Jupyter notebook, Anaconda Navigator and Libraries Installation YouTube: Setup Anaconda & Jupyter
PPT: Python Libraries
4 & 5 Practice: Python Fundamentals, Data Analysis use case, Jupyter Notebook assignments
Types of Visualization & Basics of Python
Data Visualization in Python
Plotting with Python
Intro to Data Visualization
Types of Visualization
Basic of Python (NumPy Arrays)
5 & 6 Project 1: Define study objectives, identify data needed and sources.
Group presentations.
No external links
7, 8 & 9 Practice: Data collection/importing CSV, HTML, Excel files
Sorting data, Missing values & Munging data
Sample Datasets
YouTube: Data Wrangling
Wrangling Data with Pandas
YouTube: Import HTML Data
YouTube: More Pandas
YouTube: Sorting Data
YouTube: Handling Missing Data
YouTube: Data Cleaning
Python CSV Module
10 & 11 Project 1: Data collection and sorting Pandas Tutorial 1: Introduction
Pandas Tutorial 2: DataFrame Basics
Pandas Tutorial 3: Creating DataFrames
Pandas Tutorial 4: Read/Write Excel & CSV
Import Excel File
Import HTML Data
Pandas Tutorial 13: Crosstabs
12 & 13 Practice: Basics of Numpy YouTube: Numpy Basics
Complete Python NumPy Tutorial
PPT: Basics of Numpy
14 & 15 Practice: Basics of Pandas YouTube: Pandas Basics
Pandas PDF Tutorial
16 & 17 Practice — Matplotlib Basics
18 – 21 Project 1 Work — Using Python Libraries (Pandas)
22 & 24 Practice — Plotly for Interactive Graphs
25 – 28 Project 1 Work & Interim Presentation Continue project work and prepare interim presentation
29 & 30 Practice — Seaborn Library
31 & 32 Practice — Web Scraping
33 & 34 Practice — Solve 10 Problems & Submit Group Assignments Assignments started from session 7, submission as groups (Prof. Ramana’s assignment)
35 & 36 Practice — Dashboard Basics
37 & 38 Practice — Dash (Plotly) & Jupyter Presentations
38 & 39 Practice — Interactive Charts/Maps using Bokeh & Dashboards
40 & 41 Practice — IPython-Dashboard & Live Graphs
42 & 43 Project Work Work on Project - 1 to make dashboards
44, 45 & 46 Project Final presentation of Project - 1
47 & 48 Project - 2 Start Project - 2 (ERP Dashboard)
Define the objective and prepare the flow chart
49 & 50 Project Make presentations on the objective and flow chart of Project - 2
50 & 51 Project Work on Project - 2
52 & 53 Project Make interim presentation on Project - 2
54 & 55 Project Work on Project - 2
56 & 58 Project Final presentation on Project - 2
59 & 60 Project Make final changes on Project - 1 & Project - 2 to make ready for External Evaluation