CUTM1019(1-2-1)
https://towardsdatascience.com/beginners-guide-to-machine-learning-with-python-b9ff35bc9c51
Session | Topic | Reference Link (if any) |
---|---|---|
Session 1 | Applications of Machine Learning |
YouTube Video Slideshare |
Session 2, 3 | Supervised vs Unsupervised Learning based on Problem Definition |
YouTube Video Slideshare |
Session 4, 5 | Understanding the Problem and its Possible Solutions using IRIS Dataset | YouTube Video |
Session 6, 7 | Mathematical Library in Python (NumPy) and its Functions |
YouTube Video Slideshare |
Session 8, 9 | Science Library in Python (SciPy) and its Functions |
YouTube Video Slideshare |
Session 10, 11 | ML Library in Python (scikit-learn) and its Functions |
YouTube Video scikit-learn Tutorial |
Session 12 | Defining Student Specific Project | - |
Session 13 | Linear Regression |
YouTube Video Slideshare |
Session 14 | Non-linear Regression | YouTube Video |
Session 15 | Model Evaluation | YouTube Video |
Session 16 | Evaluation Metrics in Regression Models | YouTube Video |
Session 17, 18 | Multiple Linear Regression | YouTube Video |
Session 19 | Feature Reduction using PCA |
YouTube Video Slideshare |
Session 20 | Implementation of Regression Model on IRIS Dataset | YouTube Video |
Session-21 | Defining Classification Problem with IRIS datasets | YouTube |
Session-22,23 | Create the train/test set using scikit-learn | Scikit-learn Docs |
Session-24,25 | Confusion Matrix, Accuracy, Sensitivity, Specificity | Scikit-learn Docs |
Session-26 | Mathematical formulation of K-NN for binary classification | YouTube |
Session-27,28 | Implementation of K-NN using Scikit-learn | YouTube |
Session-29,30 | Classification using Decision Tree | YouTube |
Session-31,32 | Construction of Decision Trees based on Entropy | YouTube |
Session-33,34 | Implementation of Decision Tree using Scikit-learn | YouTube |
Session-35,36 | Classification using Support Vector Machines | YouTube |
Session-37,38 | SVM for Binary Classification |
YouTube Slideshare |
Session-39,40 | Regulating SVM parameters using Scikit-learn | YouTube |
Session-41,42 | SVM for Multi-class Classification | YouTube |
Session-43,44 | Implementation of Support Vector Machines | YouTube |
Session-45,46 | Defining Clustering and its Application in ML | YouTube |
Session-47,48 | Mathematical formulation of K-Means Clustering |
YouTube Slideshare |
Session-49,50 | Defining K value in K-Means Clustering | YouTube |
Session-51,52 | Implementation of K-Means Clustering in Scikit-learn |
YouTube Slideshare |
Session-53,54 | Finding appropriate K using Elbow Technique | YouTube |
Session-55,56 | Predicting Iris Flower Species with K-Means | Medium |